0 votes
by (3.6k points)
If in triangle ABC AD is median and AM is perpendicular to BC the prove that AC2=AD2+BC*DM+1/4 BC2

1 Answer

0 votes
by (3.6k points)

We have AD as the median and AM perpendicular to BC

Since, AD is median, D is the midpoint of BC. hence,

BD = CD



Now, since AM is perpendicular to BC, so AMC is a right angled triangle. Hence,

AC² = AM² + MC²

Now, MC² can be written as (DM + DC)²

=> AC² = AM² + (DM + DC)²

=> AC² = AM² + DM² + DC² + 2DC × DM

(since, (a + b)² = a² + b² + 2ab)

Now, 2DC = BC (since D is the midpoint of BC)

=> AC² = AM² + DM² + DC² + BC × DM

Now, AM² = AD² - DM² (By Pythagoras Theorem, in ∆AMD)

=> AC² = AD² - DM² + DM² + DC² + BC × DM

=> AC² = AD² + BC × DM + DC²

Now, DC = 1/2 BC

=> DC² = (1/2 × BC)²

=> DC² = 1/4 × BC²

So put DC² as 1/4 BC² and we have

AC² = AD² + BC × DM + 1/4 × BC²

Hence Proved :)

Welcome to Edusaint Q&A, where you can ask questions and receive answers from other members of the community.
...